Transferring task models in Reinforcement Learning agents
نویسندگان
چکیده
منابع مشابه
Transferring task models in Reinforcement Learning agents
The main objective of Transfer Learning is to reuse knowledge acquired in a previous learned task, in order to enhance the learning procedure in a new and more complex task. Transfer learning comprises a suitable solution for speeding up the learning procedure in Reinforcement Learning tasks. This work proposes a novel method for transferring models to Reinforcement Learning agents. The models ...
متن کاملTransferring Models in Hybrid Reinforcement Learning Agents
The main objective of transfer learning is to reuse knowledge acquired in a previous learned task, in order to enhance the learning procedure in a new and more complex task. Transfer learning comprises a suitable solution for speeding up the learning procedure in Reinforcement Learning tasks. In this work, we propose a novel method for transferring models to a hybrid reinforcement learning agen...
متن کامل1193 Transferring Experience in Reinforcement Learning through Task Decomposition ( Extended
Transfer learning refers to the process of conveying experience from a simple task to another more complex (and related) task in order to reduce the amount of time that is required to learn the latter task. Typically, in a transfer learning procedure the agent learns a behavior in a source task, and it uses the gained knowledge in order to speed up the learning process in a target task. Reinfor...
متن کاملTransferring experience in reinforcement learning through task decomposition
Transfer learning refers to the process of conveying experience from a simple task to another more complex (and related) task in order to reduce the amount of time that is required to learn the latter task. Typically, in a transfer learning procedure the agent learns a behavior in a source task, and it uses the gained knowledge in order to speed up the learning process in a target task. Reinfor...
متن کاملTransferring Expectations in Model-based Reinforcement Learning
We study how to automatically select and adapt multiple abstractions or representations of the world to support model-based reinforcement learning. We address the challenges of transfer learning in heterogeneous environments with varying tasks. We present an efficient, online framework that, through a sequence of tasks, learns a set of relevant representations to be used in future tasks. Withou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neurocomputing
سال: 2013
ISSN: 0925-2312
DOI: 10.1016/j.neucom.2012.08.039